Равные треугольники
Равные треугольники правило
Признаки равенства треугольников
Равными называют треугольники, у которых соответствующие стороны равны.
Теорема (первый признак равенства треугольников).
Если две стороны и угол, заключенный между ними, одного треугольника соответственно равны двум сторонам и углу, заключенному между ними, другого треугольника, то такие треугольники равны.
Теорема (второй признак равенства треугольников).
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Теорема (третий признак равенства треугольников).
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Признаки подобия треугольников
Подобными называются треугольники, у которых углы равны, а сходственные стороны пропорциональны: , , где — коэффициент подобия.
I признак подобия треугольников. Если два угла одного треугольника соответственно равны двум углам другого, то эти треугольники подобны.
II признак подобия треугольников. Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
III признак подобия треугольников. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Следствие: Площади подобных треугольников относятся как квадрат коэффициента подобия: .
Признаки равенства треугольников
Два треугольника называются равными, если их можно совместить наложением. На рисунке 1 изображены равные треугольники ABC и А1В1С1. Каждый из этих треугольников можно наложить на другой так, что они полностью совместятся, т. е. попарно совместятся их вершины и стороны. Ясно, что при этом совместятся попарно и углы этих треугольников.
Таким образом, если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника.
Отметим, что в равных треугольниках против соответственно равных сторон (т. е.
совмещающихся при наложении) лежат равные углы, и обратно: против соответственно равных углов лежат равные стороны.Так, например, в равных треугольниках ABC и A1B1C1, изображенных на рисунке 1, против соответственно равных сторон АВ и А1В1 лежат равные углы С и С1. Равенство треугольников ABC и А1В1С1 будем обозначать так: Δ ABC = Δ А1В1С1. Оказывается, что равенство двух треугольников можно установить, сравнивая некоторые их элементы.
Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис.2).
Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.
Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1.
Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1.
Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.
Аналогично методом наложения доказывается теорема 2.
Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).
Замечание. На основе теоремы 2 устанавливается теорема 3.
Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.
Из последней теоремы вытекает теорема 4.
Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (подробнее).
Пример 1. В треугольниках ABC и DEF (рис. 4)
∠ А = ∠ Е, АВ = 20 см, АС = 18 см, DE = 18 см, EF = 20 см. Сравнить треугольники ABC и DEF. Какой угол в треугольнике DEF равен углу В?
Решение. Данные треугольники равны по первому признаку. Угол F треугольника DEF равен углу В треугольника ABC, так как эти углы лежат против соответственно равных сторон DE и АС.
Пример 2. Отрезки АВ и CD (рис. 5) пересекаются в точке О, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок АС равен 6 м?
Решение. Треугольники АОС и BOD равны (по первому признаку): ∠ АОС = ∠ BOD (вертикальные), АО = ОВ, СО = OD (по условию).
Из равенства этих треугольников следует равенство их сторон, т. е. АС = BD. Но так как по условию АС = 6 м, то и BD = 6 м.
Пример 3. В треугольниках ABC и DEF (см. рис. 4) АВ = EF, ∠A = ∠E, ∠B = ∠F.
Сравнить эти треугольники. Какие стороны в треугольнике DEF равны соответственно сторонам ВС и СА?
Решение. Треугольники ABC и DEF равны по второму признаку. Стороны DF и DE треугольника DEF равны соответственно сторонам ВС и СА треугольника ABC, так как стороны DF и ВС (DE и СА) лежат против равных углов Е и A (F и В).
Пример 4. На рисунке 6 углы DAB и СВА, CAB и DBA равны, СА = 13 м. Найти DB.
Решение. Треугольники АСВ и ADB имеют одну общую сторону АВ и по два равных угла, которые прилежат к этой стороне. Следовательно, треугольники АСВ и ADB равны (по второму признаку). Из равенства этих треугольников следует равенство сторон BD и АС, т. е. BD = 13 м.
Как доказать, что треугольники равны
Как доказать, что треугольники равны? Для этого надо знать признаки равенства треугольников и уметь определять в треугольниках равные стороны и равные углы.
Очень удобный и эффективный инструмент, облегчающий доказательство равенства треугольников, — визуализация задачи. Выделение треугольников разными цветами помогает лучше понять условие и может подсказать ход решения. Если у треугольников есть общий угол либо общая сторона, цветовая визуализация позволяет сразу же увидеть это.
Рекомендую завести специальную тетрадь для записи теоретического материала.
На отдельных страницах запишите:
План доказательства равенства треугольников.
1) Определяем, какие именно треугольники равны (название треугольников).
2) Выделяем треугольники, равенство которых надо доказать, разными цветами.
3) Отмечаем на чертеже стороны и углы, равенство которых дано по условию.
4) Проверяем, есть ли у данных треугольников общая сторона либо общий угол.
5) Анализируем, что имеем с точки зрения признаков равенства треугольников. Например, если у треугольников уже есть две пары равных сторон, то нужно доказывать либо равенство углов между этими сторонами, либо равенство третьей пары сторон.
6) Если треугольники имеют прямой угол, используем признаки равенства прямоугольных треугольников.
7) Ищем недостающие пары равных углов или равных сторон ( при необходимости используем подсказки).8) Если данных недостаточно, выясняем, можно ли доказать равенство других треугольников, чтобы из него получить равенство сторон или (и) равенство углов для наших треугольников.
9) Если необходимо, проводим дополнительные построения.
На следующем этапе на конкретных задачах рассмотрим, как доказывать, что треугольники равны.
Большое спасибо:) информация очень полезная)) теперь хоть умею доказывать равенство треугольников
Эля, я рада, что эта информация помогла Вам разобраться в данной теме. Желаю дальнейших успехов в изучении геометрии!
Определение
Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.
Математическое представление двух подобных треугольников A1B1C1 и A2B2C2 , показанных на рисунке, записывается следующим образом:
Два треугольника являются подобными если:
1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A1 = ∠A2, ∠B1 = ∠B2 и∠C1 = ∠C2
$\frac=\frac=\frac$
3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом углы между этими сторонами равны:
$\frac=\frac$ и $\angle A_1 = \angle A_2$ или
$\frac=\frac$ и $\angle B_1 = \angle B_2$ или
$\frac=\frac$ и $\angle C_1 = \angle C_2$
Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:
Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.
Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:
1) три угла каждого треугольника (длины сторон треугольников знать не нужно).
Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 — угол1 — угол2)
2) длины сторон каждого треугольника (углы знать не нужно);
3) длины двух сторон и угол между ними.
Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.
Практические задачи с подобными треугольниками
Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.
Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:
Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR.
Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R(так как ∠C = 180 — ∠A — ∠B и ∠R = 180 — ∠P — ∠Q)
Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$\frac=\frac=\frac$
Пример №3: Определите длину AB в данном треугольнике.
Решение:
∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.
$\frac = \frac = \frac = \frac = \frac = \frac \Rightarrow 2\times AB = AB + 4 \Rightarrow AB = 4$
Пример №4:Определить длину AD (x) геометрической фигуры на рисунке.
Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.
AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC
Следовательно:
$\frac = \frac = \frac = \frac \Rightarrow CA = \frac = 23.57$
x = AC — DC = 23.57 — 15 = 8.57
Практические примеры
Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.
Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.
Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.
Решение:
Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.
Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,
$\frac = \frac = \frac = \frac \Rightarrow AB = \frac = 24 м$
x = AB — 8 = 24 — 8 = 16 м
Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.
А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:
Аналогично, $AC = \sqrt = \sqrt = 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.
y = AC — AE = 25.63 — 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.
Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.
Решение:
Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$\frac = \frac = \frac$
В условии задачи сказано, что:
AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км
Используя эту информацию, мы можем вычислить следующие расстояния:
Стив может добраться к дому своего друга по следующим маршрутам:
Источник: http://bouncekitchen.ru/2018-ravnye-treugolniki-pravilo/
Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника – формулы вычисления, прямоугольный треугольник, равнобедренный треугольник, высота треугольника
Навигация по справочнику TehTab.ru: главная страница / / Техническая информация / / Математический справочник / / Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. / / Плоские фигуры.
Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. / / Свойства треугольника. В том числе равенство и подобие, равные треугольники, стороны треугольника, углы треугольника, площадь треугольника – формулы вычисления, прямоугольный треугольник, равнобедренный треугольник, высота треугольника.
Свойства треугольников.Меню
| |||||||||||||||||||||||||||||||||||||
Источник: https://tehtab.ru/Guide/GuideMathematics/PerimSqVolGradRad/SquaresOfPlainFigures/TrianglesProporties/
Равнобедренный треугольник. Подробная теория с примерами
Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для подготовки к ЕГЭ по математике, ОГЭ по математике и ЕГЭ и ОГЭ по другим предметам.
Среди всех треугольников есть два особенных вида: прямоугольные треугольники и равнобедренные треугольники. Чем же эти виды треугольников такие уж особенные? Ну, во-первых, такие треугольники чрезвычайно часто оказываются главными действующими «лицами» задач ЕГЭ первой части.
А во-вторых, задачи про прямоугольные и равнобедренные треугольники решаются гораздо легче, чем другие задачи по геометрии. Нужно всего лишь знать несколько правил и свойств. Все самое интересное о прямоугольных треугольниках обсуждается в соответствующей теме, а сейчас рассмотрим равнобедренные треугольники.
И прежде всего, что же такое – равнобедренный треугольник. Или, как говорят математики, каково определение равнобедренного треугольника?
Треугольник называется равнобедренным, если у него есть две равные стороны. |
Посмотри, как это выглядит:
Как и у прямоугольного треугольника, у равнобедренного треугольника есть специальные названия для сторон. Две равные стороны называются боковыми сторонами, а третья сторона – основанием.
И снова внимание на картинку:
Может быть, конечно, и так:
Так что будь внимательным: боковая сторона – одна из двух равных сторон в равнобедренном треугольнике, а основание – третья сторона.
Чем же так уж хорош равнобедренный треугольник? Чтобы это понять, давай проведём высоту к основанию. Ты помнишь, что такое высота?
Это просто линия, проведённая из вершины треугольника перпендикулярно противоположной стороне. Итак, провели высоту. |
Что же получилось? Из одного равнобедренного треугольника получилось два прямоугольных.
Это уже хорошо, но так получится в любом, самом «кособедренном» треугольнике.
Смотри:
Тоже два прямоугольных…. |
Чем же отличается картинка для равнобедренного треугольника? Смотри ещё раз:
Видишь, два прямоугольных треугольника ( и ) – одинаковые! Или, как математически любят говорить? равные! |
Ну, во-первых, конечно, этим странным математикам мало просто видеть – нужно непременно доказывать. А то вдруг эти треугольники чуть-чуть разные, а мы будем считать их одинаковыми.
Но не переживай: в данном случае доказывать почти так же просто, как и видеть.
Начнём? Посмотри внимательно, у нас есть:
(ещё говорят, – общая) |
И, значит, ! Почему? Да мы просто найдём и , и из теоремы Пифагора (помня ещё при этом, что )
Удостоверились? Ну вот, теперь у нас
А уж по трём сторонам – самый легкий (третий) признак равенства треугольников.
Ну вот, наш равнобедренный треугольник разделился на два одинаковых прямоугольных.
Отметим на картинке все одинаковые элементы (углы и стороны). |
Видишь, как интересно? Получилось, что:
Как же об этом принято говорить у математиков? Давай по порядку:
|
(Вспоминаем тут, что медиана – линия, проведённая из вершины, которая делит сторону пополам, а биссектриса – угол.)
Ну вот, здесь мы обсудили, что хорошего можно увидеть, если дан равнобедренный треугольник. Мы вывели, что у равнобедренного треугольника углы при основании равны, а высота, биссектриса и медиана, проведенные к основанию, совпадают.
И теперь возникает другой вопрос: а как узнать равнобедренный треугольник? То есть, как говорят математики, каковы признаки равнобедренного треугольника?
И оказывается, что нужно просто «перевернуть» все высказывания наоборот. Так, конечно, не всегда бывает, но равнобедренный треугольник всё-таки отличная штука! Что же получится после «переворачивания»?
I. Если в каком-то треугольнике есть два равных угла, то такой треугольник – равнобедренный (ну и естественно, углы эти окажутся при основании). |
II. Если в каком-то треугольнике
проведённые к какой-то стороне, совпадут, то такой треугольник – равнобедренный, а сторона эта – основание. |
Ну вот смотри:
Если совпадают высота и медиана, то:
Если совпадают высота и биссектриса, то:
Если совпадают биссектриса и медиана, то:
Ну вот, не забывай и пользуйся:
- Если дан равнобедренный треугольный треугольник, смело проводи высоту, получай два прямоугольных треугольника и решай задачу уже про прямоугольный треугольник.
- Если дано, что два угла равны, то треугольник точно равнобедренный и можно проводить высоту и ….( Дом, который построил Джек…).
- Если оказалось, что высота разделена сторону пополам, то треугольник – равнобедренный со всеми вытекающими бонусами.
- Если оказалось, что высота разделила угол полам – тоже равнобедренный!
- Если биссектриса разделила сторону пополам или медиана – угол, то это тоже бывает только в равнобедренном треугольнике
Давай посмотрим, как выглядит в задачах.
Задача 1 (самая простая)
В треугольнике стороны и равны, а . Найти .
Решаем:
Сначала рисунок.
Что здесь – основание? Конечно, .
Вспоминаем, что если , то и .
Обновлённый рисунок:
Обозначим за . Чему там равна сумма углов треугольника? ?
Пользуемся:
Вот и ответ: .
Несложно, правда? Даже высоту проводить не пришлось.
Задача 2 (Тоже не очень хитрая, но нужно повторить тему «Прямоугольный треугольник»)
В треугольнике , . Найти .
Решаем:
Смотрим внимательно и соображаем, что раз , то . |
Треугольник-то – равнобедренный! Проводим высоту (это и есть фокус, с помощью которого сейчас все решится).
Вспоминаем, что высота = медиана, то есть . |
Теперь «вычёркиваем из жизни» , рассмотрим только .
Итак, в имеем:
Вспоминаем табличное значения косинусов (ну, или глядим в шпаргалку…)
Осталось найти : .
Ответ: .
Заметим, что нам тут очень потребовались знания, касающиеся прямоугольного треугольника и «табличных» синусов и косинусов. Очень часто так и бывает: темы «Прямоугольный треугольник», «Равнобедренный треугольник» и «Основные формулы тригонометрии» в задачках ходят в связках, а с другими темами не слишком дружат.
Равнобедренный треугольник. Средний уровень
Треугольник называется равнобедренным, если у него есть две равные стороны. |
Эти две равные стороны называются боковыми сторонами, а третья сторона – основание равнобедренного треугольника.
Посмотри на рисунок: и – боковые стороны, – основание равнобедренного треугольника.
Свойства равнобедренного треугольника:
|
Давай на одном рисунке поймём, почему так выходит. Проведем из точки высоту .
Что получилось? Треугольник разделился на два прямоугольных треугольника и . И эти треугольники равны! У них равны гипотенузы и общий катет . |
Значит, у них равны все соответствующие элементы.
То есть:
|
Всё! Одним махом (высотой ) доказали сразу все утверждения.
И ты запомни: чтобы решить задачу про равнобедренный треугольник часто бывает очень полезно опустить высоту на основание равнобедренного треугольника и разделить его на два равных прямоугольных треугольника.
Признаки равнобедренного треугольника
Верны и обратные утверждения:
|
Почти все из этих утверждений снова можно доказать «одним махом».
1. Итак, пусть в оказались равны и .
Проведём высоту . Тогда
– как прямоугольные по катету и острому углу. |
Значит, .
Доказали, что – равнобедренный. |
2. a) Теперь пусть в каком–то треугольнике совпадают высота и биссектриса.
Тогда снова по катету и острому углу. Значит, опять . |
2. б) А если совпадают высота и медиана? Все почти так же, ничуть не сложнее!
– по двум катетам |
2. в) А вот если нет высоты, которая опущена на основание равнобедренного треугольника, то нет и никаких изначально прямоугольных треугольников. Плохо!
Но выход есть – читай его в следующем уровне теории, поскольку тут доказательство посложнее, а пока просто запомни, что если медиана и биссектриса совпали, то треугольник тоже окажется равнобедренным, и высота всё-таки тоже совпадёт с этими биссектрисой и медианой.
Подытожим:
- Если треугольник равнобедренный, то углы при основании равны, и высота, биссектриса и медиана, проведенные к основанию, совпадают.
- Если в каком-то треугольнике найдутся два равных угла, или какие-то две из трех линий (биссектриса, медиана, высота) совпадут, то такой треугольник – равнобедренный.
Равнобедренный треугольник. Краткое описание и основные формулы
Равнобедренный треугольник – треугольник, у которого есть две равные стороны.
|
Свойства равнобедренного треугольника:
|
Признаки равнобедренного треугольника:
- Если в некотором треугольнике два угла равны, то он – равнобедренный.
- Если в некотором треугольнике совпадают:
а) высота и биссектриса или
б) высота и медиана или
в) медиана и биссектриса,
проведённые к одной стороне, то такой треугольник – равнобедренный.
P.S. ПОСЛЕДНИЙ БЕСЦЕННЫЙ СОВЕТ 🙂
Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.
Почему?
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для чего?
Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это – не главное.
Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Но, думай сам…
Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?
НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время.
И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.
Это как в спорте – нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.
Как? Есть два варианта:
Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.
Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.
И в заключение…
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Удачи!
Источник: https://youclever.org/book/ravnobedrennyj-treugolnik-1